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I. Statement of the Problem. Assume that a viscous, heat-conducting liquid containing 
an impurity fills an infinite, plane horizontal layer whose thickness is h. The lower bound- 
ary of the layer consists of a solid surface, which is at a constant temperature. The upper, 
free boundary of the layer is not deformed and is free from sheering stresses. The atmo- 
sphere above the layer consists of an immobile gas with a quasistationary temperature distri- 
bution. The vertical thermal flux Q in the atmosphere at a point remote from the free sur- 
face of the liquid is considered to be assigned (the case Q > 0 corresponds to heating from 
below). The temperature and the normal component of the thermal flux are continuous during 
passage through the free surface. There is no impurity flow through the boundaries of the 
layer. The liquid as a whole cannot move in a direction parallel to the bottom. The amount 
of impurity in the liquid does not vary with time. 

The problem of determining the velocity vector V = {Vx, Vy, Vz}, the pressure H, the 
liquid temperature T, the atmosphere temperature O , and the impurity concentration S, re- 
duced to dimensionless form and written in the Boussinesq approximation, is given by 

OV/Ot + (V, v)V : --V H + AV q- e(GT --  OsS ), OT/Ot + (V, v ) T  

= (I/P)AT, d ivV  := O, A@ : 0 ,  OS/Ot ~ (V, v)S : (~/Pa) d i v ( v S  

+  svr), ,I = = .I sd -.f = o, v : o, r : o s / o ,  

+ ~SOT/Oz = 0 (z = 0), v z = OvxlOz + OVz/OX : Ovy/Oz ~ avz/Oy = T - -  0 

: -  O T / O z -  mOO/Oz = OS/Oz § ~SOT/Oz = 0 (z = l ) ,  

( z - +  oo) ,  
VO -+ {0, 0 , - -  t / m }  

(1.1) 

where ~ is the region filled with the liquid, t is the time, e = {0, 0, I} is the unit vector 

of the z axis, O = g~h4Q/~ 2 and O s = g~shaff/? 2 are the Grashof number and its concentration 
analog, respectively, P = v/X and Pd = v/d are the Prandtl number and its diffusion analog, 
respectively, ~ = khQ/ ~ is a parameter characterizing thermal diffusion, m = ~0/• is the 
ratio of the thermal conductivity coefficient of the atmosphere n 0 to the thermal conduc- 
tivity coefficient of the liquid • , g is the acceleration due to gravity, S is the mean 
impurity concentration under isothermic conditions, and ~, X, B, BS, d, and k are, respec- 
tively, the coefficients of kinematic viscosity, thermal diffusivity, thermal expansion, con- 
centration compression, impurity diffusion, and thermal diffusion. 

It should be noted that Eqs. (1.1) coincide with the ordinarily used equations for free 
convection of a binary mixture [I-3] if a constant value (for instance, the mean impurity 
concentration S) is substituted for S in the term ~SvT. Such a substitution, however, would 
make equations (1.1) applicable only to the case of very small changes in the impurity con- 
centration and would produce the impossible effect of impurity development as a result of 
heating. 

Problem (1.1) admits of an exact solution (mechanical equilibrium): 

Vo : 0 ,  To : - - z ,  So = ~ exp  ( ~ z ) [ e x p  (~) - -  i l  -1 ,  

i--m--z , ~ (1.2) 
@0 m , No--  (GT o - G s S o )  d z + c o n s t .  

0 

We shall now determine the secondary two-dimensional steady-state conditions originating 
from the equilibrium case (1.2) as the Rayleigh number R = GP passes through the critical 
value R0. 
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2. Two-Dimensional Steady-State Convection. Using the method described in [4], we sat- 
isfy ourselves that problem (1.1) has a two-dimensional, steady-state solution, which can be 
represented in the form of Lyapunov--Schmidt series: 

v~ = sAul(z)  s in  ax  -~ e~A~u~(z) s in  2 a x  ~- . . . .  

v~= eAw~(z) cos ~x + e~A%~(z) cos 2 a x  -~- . . . ,  

T =  To -t- eAP '~(z )  cos ax + e~A~P[~(z)  cos 2(zx -',- %(z)] ~- . . . ,  ( 2 . 1 )  

0 = Oo ~- eAP0~(z) cos ax  -}- e~A2p [02(z) cos 2ax ~- 0o(Z)] -[- . . . ,  

S =- So -[- eA~Pas~(z) cos ax ~ 82Ai.~Pd[Si(Z ) cos 2 a x  -~- So(Z )] i- . . . ,  

II  = iIo ~- eAq~(z) cos ax  -'r- e~A~"[qi(z) cos 2 a x  ~- qo(z)l -~- ... 

Here, r = [(R- R0)sign (R0)] I/2 is a small parameter, a is the wave number of perturba- 
tions, and A = ~ is the amplitude of the secondary convective mode, while the constant a 
is found by means of the expressions 

1 
4I~ 

a = ~ ,  ~ = [ ( D % )  ~" + 2~ ~ (Dr;0 ~ + =~w~] d~, 
0 

1 

I~ = S [ I ~  + ~~ (~ + ~6) l~-c~ + ~%p~t l l~  (~  + 6~)1 dz, 
0 

"]~ = 3~z~(w~Dw2 -~ 2w,zDw~) - -  w ~ D a w 2 -  2Dto~D~w2 -~ Dw,zD"-w~ "~- ( 2 . 2 )  

+ 2wiD3wl, 12 = ~lDw2 -[- 4"~.zDwl -~- 2wiD~l  -~- 2 w i ( D ~  @ 2D~0), 

/3 : slDw2 + 4s~Dwl -~ 2wiDs 1 {- 2wl(Ds2 -}- 2Ds0), 

w h e r e  ~ = $ s k x S / ~ d  i s  t h e  t h e r m a l  c o n c e n t r a t i o n  p a r a m e t e r ,  D = d / d z ;  6 = P / P d "  

I n  d e r i v i n g  e x p r e s s i o n s  ( 2 . 2 ) ,  we a s s u m e d  t h a t  ~ =khQ]~ r  ~ , 0 .  We t h e r e b y  l i m i t  o u r -  
s e l v e s  t o  t h e  c a s e  o f  a n o t  t o o  t h i c k  l a y e r  a n d  l i q u i d s  w h e r e  t h e  t h e r m a l  d i f f u s i o n  c o e f f i -  
c i e n t  k is small in comparison with the thermal conductivity coefficient ~. It is, of 
course, not difficult to consider also the case ~ ~ 0; however, expressions (2.2) then become 
too cumbersome. 

In order to find the critical value R0 and the functions w~, r~, and sz, it is necessary 
to find the "first" (smallest with respect to absolute value) eigenvalue and the correspond- 
ing eigensolution of the spectral problem, 

(D ~ - -  a~)izvl = ~Ro [(i § ~5)~1 - t~*~ ], 

( D  ~ - -  r = - - w l ,  ( D  ~ - -  r176162 = w l ,  ~1  = sl  -]- r 

wl = D w l  = ' ~ 1  = D ~  = 0  (z = 0 ) ,  

w~ = D~w~ = D ~  + mcc~ = D~p~ = 0 (z = t ) .  

(2.3) 

The functions wi, %2, and s2 are found by solving the nonhomogeneous boundary-value 
problem 

( D  ~ - -  4~z~)iw~ = 4 a 2  H o [ ( i  + ~5)~= - -  ~ 2 ]  + 

-}- wlDSwl - -  DwlD~wl,  ~ = s2 -{- 5s:2, 

(D 2 - -  4a2)'~2 = --w2 -[- P (wlD '~I - -%DwO/2 ,  

(D 2 - -  4 a 2 ) ~  = w~ -{- P d(WlDs 1 -- slDwl)/2 , 

w2 = D w 2  = "~2 = D ~  = 0  (z  = 0 ) ,  

w2 = Diw2 -= D'~2 -{- 2ma% = D ~ 2  = 0 (z  = t{).  

The other coefficients of expansion (2.1) are found by means of the expressions 

u 1 = - - D w J ( z ,  u~ = - - D w J i a ,  0o = %( t ) ,  

01 = "~1(1) exp  [ a ( i  - -  z)] ,  02 = %(I )  exp  [2(z(t - -  z)] ,  
z 

qo=RoJ'(~o-.~o)~, q~= ~z)%-z)w.  
0 

(2.4) 
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TABLE 

0,567 
0,815 
i,090 
1,455 
2,i00 

R, ,  A 

80 4,31.10 -~ 
~05 4,5i. i0 -~ 
i50 4,44-10-~ 
256 4,06. ~0-~ 
681 2,53. i0 -~ 

5,i3. l0 -~ 
8,45.i0 -~ 
~,i5.10-~ 
t,54. i 0 -a 
i ,49- i0-a  

q2 = [D3w~ - -  4~Dw2  - -  wiDOw1 + (Dwl)~]/4~ 2, 
z 1 Z 

To = wieldY, so = ~o - -  ~odg, ~o =--6-  wl(sl--g~T1) dY. 
0 0 0 

I n  a c c o r d a n c e  w i t h  [ 5 ] ,  we s a t i s f y  o u r s e l v e s  t h a t  t h e  d e c r e m e n t s  o and  o '  o f  t h e  e q u i -  
l i b r i u m  c a s e  ( 1 . 2 )  and  t h e  s e c o n d a r y  mode ( 2 . 1 )  c a n  b e  e x p a n d e d  i n  s e r i e s  d e r i v e d  f r o m  t h e  
p e r t u r b a t i o n  t h e o r y :  

= ~ ( R - - R o ) + a 4 ( R - - R o ) 2 +  . . . .  ~ = ~ 2 e " + o 4 e  + ~ .~  ( 2 . 5 )  

The leading coefficients of series (2.5) are related by the expressions 

f 

~ = - -  2~2 s ign (Ro) , ~ = I1/RoI3, 
1 1 

1 3 =  f [(Dwl) 2 § a:w~]dz + ~2RoPa ~ [~s~ § ~5s1~ 1 + 5(1 + ~5) ~ ]  dz. 
0 0 

Assume that R0 is the single eigenvalue of problem (2.3) and that aR0 > 0 and o2R0 > 0. 
It then follows from the results obtained in [4, 5] that the equilibrium (1.2) is stable for 
small subcriticalities (IRI < IR01) and unstable for small supercriticalities (IRI > IR01). 
As R passes through the critical value R0, there develops smoothly the secondary steady-state 
mode, which is represented in the form of'convergent series (2.1) and is uniquely determined 
(with an accuracy to the shift along the x axis) by the wave number ~ for fixed values of 
~, m, P, and Pd- This secondary mode is stable for small supercriticalities with regard to 
infinitesimal two-dimensional perturbations having the same periodicity and parity with re- 
spect to x as the functions (2.1). 

The signs of R0, a, and oe are determined by calculating these values by means of a 
computer; however, in certain particular cases, this can be done without resorting to cal- 
culations. Using the method described in [4, 5], we satisfy ourselves that the following 
statements hold. If p ~ 0, then R0 > 0 and 02 > 0. If 3~ + 4 ~ 0, then R0 < 0 and o2 < 0. 
If p ~ 0 and 6 = 0, then a > 0. 

3. Numerical Results. The spectral problem (2.3) and the nonhomogeneous problem (2.4) 
were solved numerically by means of a BESM-4 computer, using the ranging method. In calcula- 
tions, we performed numerical minimization of the critical value R0(~) with respect to ~, 
i.e., we sought the value ~, of the wave number ~ corresponding to the most critical pertur- 
bations. The eigensolution of problem (2.3) was normalized by using the condition TI(I) = I, 
which imparted a simple physical meaning to the amplitude of the secondary convective mode A: 
The dimensionless temperature at the free surface of the layer obeys the law 

T = - - i  + e A P  cos  ax + 0(82). 

The calculations were performed for the case P = 7, Pd = 813, m = 0.0436, and ~ ~ 0 
corresponding to a sea water layer (salt is the impurity in the liquid) whose free surface 
is in contact with air. Table I provides the results obtained in calculating the critical 
value of the wave number a,, the critical value R, minimized with respect to ~, the amplitude 
of the secondary convective mode A, and the leading coefficient o~ in the expansion of the 
decrement o of the equilibrium (1.2) in series (2.5) of the perturbation theory as functions 
of the thermal concentration parameter ~. For the parameter values considered in this prob- 
lem, the values of R,, ~, and 02 were positive for any ~ ~ O. This indicates that the two- 
dimensional secondary steady-state mode is excited softly in a sea water layer and is stable 
for small supercriticalities. 
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CALCULATION OF NONSTATIONARY MIXED CONVECTION OF BINARY GAS 

MIXTURES IN THE PRESENCE OF LARGE DENSITY VARIATIONS 

D. A. Nikulin and M. Kh. Strelets UDC 532.516.5:529.2 

Nonstationary mixed-convective flows of gas and gas mixtures are extremely widespread 
in nature and technology. Their study is necessary, for example, for developing safe methods 
for handling toxic and explosive mixtures, solving a number of ecological problems, and in- 
dustrial hygiene. In spite of the considerably subsonic nature of such flows, the spatial-- 
temporal variation of the density in the flow, due to the nonisothermality or difference in 
the molecular weights of the components of the mixture, can in many cases be very significant. 
Nevertheless, until recently, the theoretical analysis of mixed-convective flows, just as the 
solution of the problems of natural convection, was based primarily on the use of the so- 
called Boussinesq approximation [I], which is based on the assumption that the density vari- 
ations in the flow are small. In [2, 3] a system of equations is formulated, which, in con- 
trast to the Boussinesq approximation, can be used to describe the convection of binary gas 
mixtures in the presence of arbitrary finite variations of the density, which greatly ex- 
panded the possibilities of numerical modeling of such flows. 

In this paper, the approach adopted in [2, 3] is generalized to the case of mixed-con- 
vective flows. 

The basic difference between the derivation, proposed below, of the approximate system 
of equations of mixed convection and the analogous derivation of the system of equations of 
natural convection, described in [2, 3], lies in the choice of scales used to put the com- 
plete system of Navier--Stokes equations, on which the analysis is based, into dimensionless 
form. This difference is due to the appearance of an additional dimensional parameter -- the 
characteristic velocity of forced convection -- in problems of mixed convection. To illustrate 
the choice of scales, we shall examine the following problem. Let a region, with the shape 
of a rectangular parallelepiped, be filled with gas with molecular weight m2 at a tempera- 
ture T2. Initially, another gas, whose molecular weight is ml and whose temperature is TI 
(for definiteness T2 > Tl, m2 > ml), begins to enter the volume with velocity vl through the 
opening ef (Fig. I). Simultaneously, the same gas that filled the volume initially is in- 
troduced into the region with velocity v2 through the opening ab. The mixture formed flows 
out of the volume through the opening cd. The problem is to calculate the development of the 
velocity, concentration, and temperature fields of the mixture in the volume as a function of 
time. 

The problem described above is, on the one hand, quite typical for the class of flows 
under examination and, on the other, it is of certain practical interest, because it models 
the situation arising with activation of emergency forced exhaust ventilation when a foreign 
gas begins to enter an enclosure. 

To put the system of Navier--Stokes equations, which describes the flow under study, into 
dimensionless form, we shall select as scales the following characteristic parameters of the 
problem: the average geometric value of the characteristic velocities of forced and natural 
convection v0 = ~v2(gL2~1)i/2 as the velocity scale [here el = (m2/ml -- I)(T2/TI -- I) in the 
case of nonisothermal flow of the gas mixture, El = gT = T2/TI -- I in the case ofnonisothermal 
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